Emergency Recovery Plan for Global Freshwater Biodiversity Loss

Covering approximately 1% of the Earth’s surface, the world’s freshwater rivers, lakes and wetlands are home to 10% of all species and more fish species than in all the oceans combined. Posing a threat to global communities who rely on rivers, lakes, and tributaries for food, water, and economic well-being, however, 83% of freshwater species and 30% of freshwater ecosystems have been lost since 1970. In response to the alarming rate of loss of freshwater ecosystems, a recently released study developed by scientists from across a spectrum of environmental and academic institutions outlines a framework for protecting such ecosystems.

Calling it an “Emergency Recovery Plan”, the study proposes six scientifically based strategies to preserve freshwater biodiversity, that have proved successful in certain locations. These solutions include: Returning rivers and streams back to their natural flows; Protecting freshwater from toxic effluents, overfishing, invasive species and mining activity; Protecting critical habitat; and Restoring river connectivity through regulation of land uses and water infrastructure. James Dalton, Director of the International Union for Conservation of Nature Global Water Program says, “all the solutions in the Emergency Recovery Plan have been tried and tested somewhere in the world: they are realistic, pragmatic and they work. We are calling on governments, investors, companies and communities to prioritize freshwater biodiversity – often neglected by the conservation and water management worlds. Now is the time to implement these solutions, before it is too late.”

For more information see press releases for Conservation International and WWF.

Global Water Scarcity May Exacerbate Coronavirus Impacts

We’ve all heard that the best way to counter the coronavirus is to wash our hands frequently with soap and water but, for more than 40 percent of the world’s people, access to clean water for regular handwashing is a challenge. The United Nations, in an effort to improve access to safe water for drinking, bathing, and frequent handwashing, have identified three key factors contributing to this shortfall.

Cycles of drought or shortages brought on by climate change have left many communities around the globe with water shortages. Vast numbers of people live without running water in their homes, or experience water scarcity during portions of the year. Moreover, poor sanitation due to primitive waste management, unregulated mining practices, and agricultural run-off contaminate vital streams and rivers. Finally, the infrastructure used to transport water is aging, and treatment of water used to dispose of drugs, cleaning products, and other household goods is expensive and difficult.

Long-term planning and innovative measures to conserve water, capture rainwater, and reuse wastewater are needed on a broad scale to combat these issues, both locally and at a national level. While these actions may not stim the current tide of coronavirus infections, they are critical in addressing future infectious outbreaks. Read more

Radical transformation of the Pacific Arctic Includes Impacts to Freshwater

Scientists from multiple agencies, working collaboratively to supply data to the Arctic Integrated Ecosystem Research Program, are detecting rapid changes in the Bering and Chukchi Seas. These changes are driven by abnormally high water temperatures and rapid loss of sea ice (on par with climate predictions for 2040), and include high numbers of Pacific cod and pollock expanding into Arctic waters, higher concentrations of harmful algal blooms, and a sea bird die-off that began in 2014 impacting puffins, common murre and, most recently, short-tailed shearwaters. At the base of the food web, larger, high-fat copepods are declining while smaller, copepods with a lower-fat content are flourishing. This means less nutrition for Arctic cod, while, at the same time, more competition for these resources as pollock expand their range northward.

But these troubling changes are not limited to northern ocean waters. Inland, freshwater rivers in the Arctic are overheating. Record-warm temperatures in July, 2019 caused heat stress and a mass die-off in returning, pre-spawned salmon. Read more.

Indigenous Communities are Essential Part of Climate Discussion

 

Native Village of Elim Staff Collecting Flow Data – Tubutulik River, Western Region, Alaska

A new report released by the People’s Climate Network (PCN)— an alliance of activists, scholars and citizens from around the world, suggests that the role indigenous communities can play in mitigating the climate crisis is being overlooked. While global climate change movements make headlines and ”highly-educated people in far-off cities make policy” the People’s Climate Report, attempts to “amplifying voices from the grassroots.”

The report also highlights coexistence of forests, wildlife and local communities is highlighted to provide the perspective of local communities of the impacts of climate change and extraction industries especially mining. Such development leads to loss of forest cover, depletion of groundwater, increase in net-carbon emissions, changes in local weather patterns, loss of traditional tribal livelihoods and a collapse of various plant and animal species—all in the name of ‘development’.

The report show cases the case of Devi, India in which twenty year earlier, locals took the lead in returning health back to forest ecosystem after mining activity devastated the area. This included groups of mostly women who get up early in the morning to patrol forests in groups and digging pools and making mud dams to conserve water. Now a fully recovered forest with abundant resources including a steady supply of food and water, which has resulted in the return of the animals.

According to the report, “[t]hese natural resource dependent communities are among the poorest of the poor.” “They have not had a single day of formal education. And yet they have been the ones protecting this 200-hectare forest for the past twenty years or so.”

Similarly, Last month Hannah Panci from the Great Lakes Indian Fish and Wildlife Commission spoke at Lawrence University as part of the Spoerl Lecture Series, about climate impact and preparedness. Specifically, Panci discussed working with almost a dozen local Native American tribes, to develop a climate vulnerability assessment which combines both scientific research and traditional ecological knowledge (TEK) in order to create a vulnerability score for different species on tribal lands.

The organization gathers TEK by visiting the various communities, which include members that still make their living off hunting, gathering and fishing, and interviewing community these members about changes they are noticing about fish and wildlife they use for subsistence. Through this process, important information about traditions that have been passed down for generations and which species are the most important to the tribes. According to Panci, two of the main ones are wild rice and walleye, but there are 11 primary species that tribal members are concerned about.

The Great Lakes Indian Fish and Wildlife Commission then applies this information to determine what impacts climate change is having on these species and apply current scientific data to create maps of the region where such impacts are occurring and apply protection measures. By combining conventional science and local knowledge of locals is the best possible means for assisting tribal communities in the Great Lakes to prepare for climate change.

Finally, during a recent event at UC Davis in March 12, professor Beth Rose Middleton who is chair of the Native American Studies Department and Fellow at the John Muir Institute of the Environment, discussed “Tribal Leadership in Climate Change Adaptation.” Professor Middleton discussed the leadership in environmental policy and planning provided by California Indian nations in traditional including land stewardship and interventions in state, national and international policy. Middleton’s research includes Native land trusts, Native-led conservation land acquisitions, tribal participation in the carbon credit market and the importance of re-introducing traditional fire management.